Catalytic Applications of CeO2-Based Materials
نویسندگان
چکیده
منابع مشابه
Perovskite-type catalytic materials for environmental applications
Perovskites are mixed-metal oxides that are attracting much scientific and application interest owing to their low price, adaptability, and thermal stability, which often depend on bulk and surface characteristics. These materials have been extensively explored for their catalytic, electrical, magnetic, and optical properties. They are promising candidates for the photocatalytic splitting of wa...
متن کاملChemical Precipitation of BaCeO3 – CeO2 Based Nano-ceramic Composite Oxide Materials and Their Physical Characterization
In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), novel electrolyte materials based on CeO2 and BaCeO3 are being developed in the scientific realm. In this context, we propose a new methodology for preparing the nano-ceramic composite materials such as BaCe0.9Gd0.9O3-δ – Ce0.9Gd0.9O2-δ (BCGO–CGO) and BaCe0.8Sm0.2O3-δ – Ce0.8Sm0.2O2-δ (BCSO – CSO) as possible elec...
متن کاملSynthesis and catalytic applications of combined zeolitic/mesoporous materials
In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity an...
متن کاملSpotlight: Catalytic applications of molecular machines
Morteza Torabi was born in 1995 in Hamedan, Iran. He received his B.Sc. in Applied Chemistry (2017) and M.Sc. in Organic Chemistry (2019) from Bu-Ali Sina University under the supervision of Professor Mohammad Ali Zolfigol. He is currently working towards his Ph.D. under the supervision of Professor Mohammad Ali Zolfigol at Bu-Ali Sina University. His research interest is the design, synthesis ...
متن کاملCatalytic Decomposition of Ammonia over Bimetallic CuO/CeO2 Nanoparticle Catalyst
The oxidation of ammonia to nitrogen by selective catalytic oxidation (NH3-SCO) over a bimetallic CuO/CeO2 nanoparticle catalyst at temperatures between 423 and 673K. A bimetallic CuO/CeO2 nanoparticle catalyst was prepared by co-precipitation method at molar ratio of 6:4. This study also considers how the concentration of influent NH3 (C0 = 800 ppm), the space velocity (GHSV = 92000/hr), the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysts
سال: 2020
ISSN: 2073-4344
DOI: 10.3390/catal10050576